

NESDIS: NOAA's Satellite & Information Service

Dr. Stephen Volz NOAA Assistant Administrator for Satellite and Information Services

Maryland Space Business Roundtable Oct. 18, 2016

Where did we come from? Current state of NOAA's Satellite Earth **Observation System** Where are we now? Upcoming great transition Where are going? - Opportunities & challenges of the future for NESDIS and NOAA

Current State of NOAA's Earth Observation System

Supporting NOAA's Mission

NOAA is a science-based services agency engaged with the entire Earth system science enterprise.

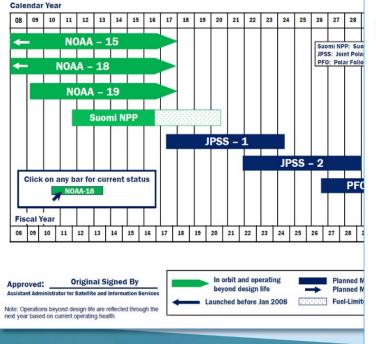
NOAA's Top Four Priorities:

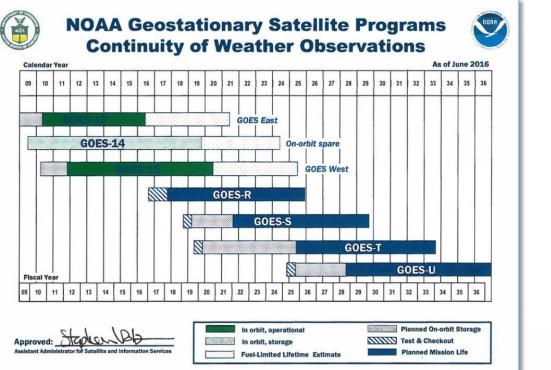
- 1. To provide information and services to make communities more resilient
- 2. To evolve the National Weather Service
- 3. To invest in observational infrastructure *50% of NOAA's Budget*
- 4. To achieve organizational excellence

NOAA's Observational Paradigm Has Been: Two Orbits, One Mission

Polar-orbiting Operational Environmental Satellites (POES) Operating since 1970 Geostationary Operational Environmental Satellites (GOES) Operating since 1975

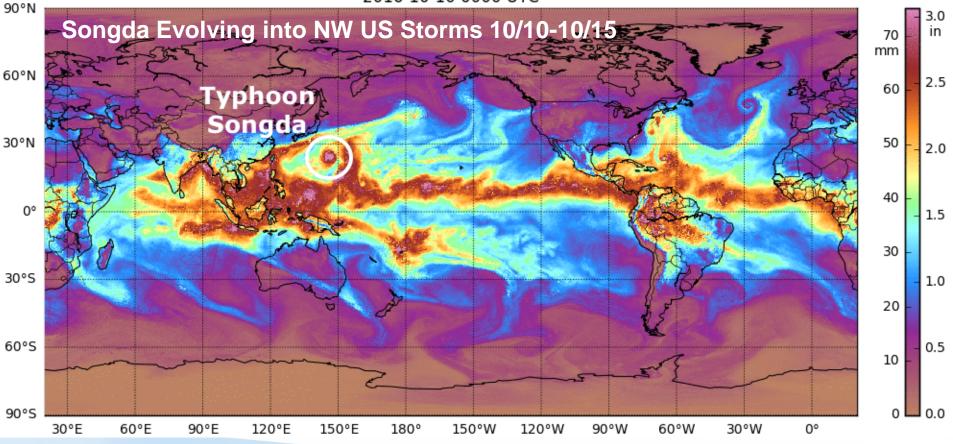
Primarily source of synoptic, global observations feeding Numerical Weather Models and forecasts Primarily source of near real time observations for nowcasting and imaging of severe weather events


S-NPP image of North America


Tracking the "Two Orbit" Program

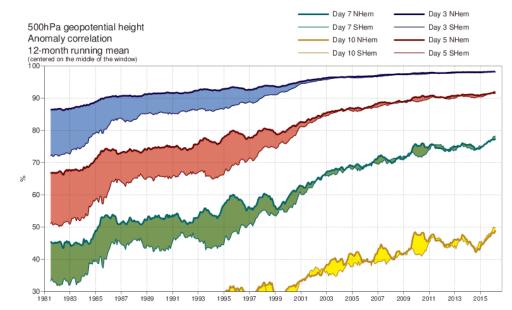
Our historical "Flyout" charts have reflected the polar and geostationary, fixed platform program approach

NOAA Polar Satellite Programs Continuity of Weather Observations



Our Weather Observations Involve Much More than NOAA

Regional Storms Require Global Observations

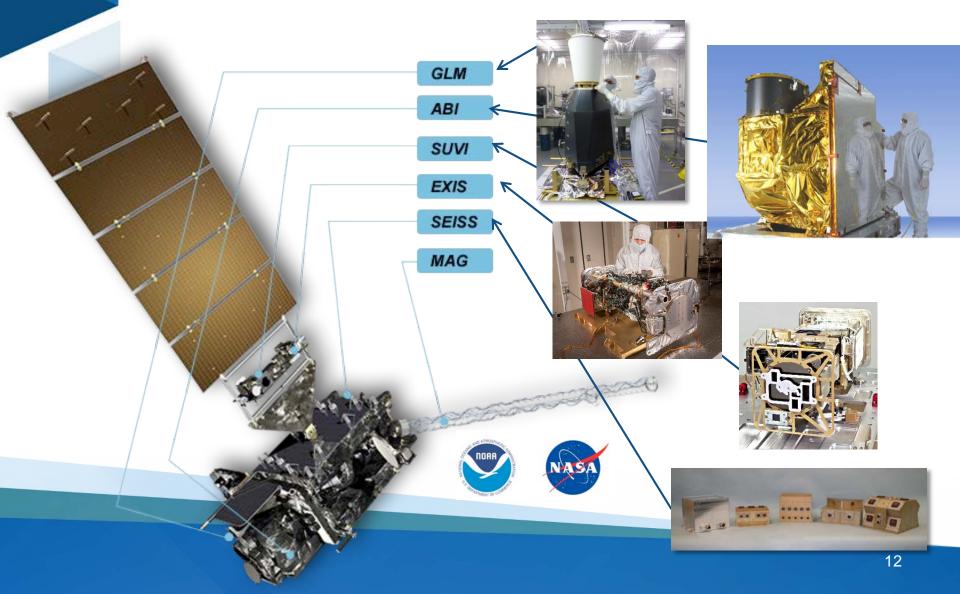

2016-10-10 0000 UTC

Total precipitable water from a constellation of microwave sounders (AMSU, ATMS) - NOAA-18, 19, MeTOP-A, -B, and SNPP.

This approach has produced great returns over the years

- Significant Improvements in 3-7 day Weather forecasts
- Improved NRT severe storm warnings & alerts
 - 20% increase in hurricane track and intensity forecasts from 2010-2015

- Companion Satellite Services
 - SARSAT: >30,000 lives saved worldwide and >7,000 saved in the USA since the program start
 - Argos Data Collection Services (A-DCS): 14,000 environmental platforms, almost 50% used by NOAA


The Coming Leap Forward

GOES-R JPSS

Recent and Upcoming NESDIS Launches

GOES-R Series Geostationary Satellite Launching November 2016 (Series will extend through ~2036)

GOES-R: The Future of Forecasting Launching in November 2016 (exact date still TBD)

Improves every product from current GOES Imager and will offer new products for severe weather forecasting, fire and smoke monitoring, volcanic ash advisories, and more.

4X BETTER RESOLUTION

Ø 0

The GOES-R series of satellites will offer images with greater clarity and 4x better resolution than earlier GOES satellites.

Faster scans every 30 seconds of severe weather events and can scan the entire full disk of the Earth 5x faster than before.

-09-Aug-2016 22:00:00 UTC

GOES-14

GOES-13

G-15 IMG: 0.62 UM - 22:00 UTC - 09-AUG-2016

G-14 IMG: 0.62 UM - 22:00 UTC - 09-AUG-2016

G-13 ING: 0.63 UM - 22:00 UTC - 09-AUG-2016

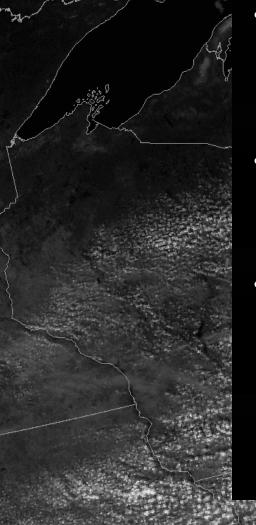
JPSS-1 Polar-Orbiting Satellite Coming in 2017 (Series will extend through ~2038)

ATMS and CrIS together provide profiles of atmospheric temperature, moisture, and pressure VIIRS provides daily high-resolution imagery and radiometry across the visible to long wave infrared spectrum OMPS Spectrometer with UV bands for ozone total column measurements

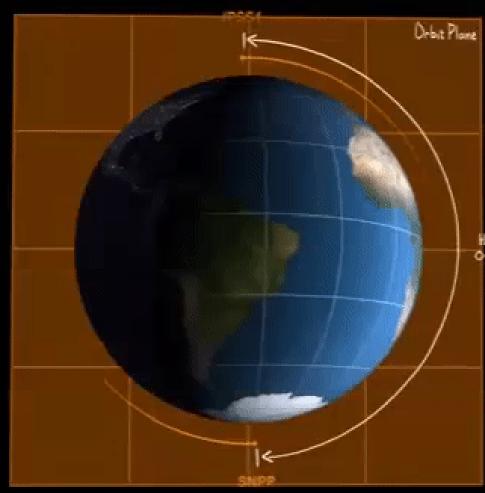
CERES or RBI Scanning radiometer which supports studies of Earth Radiation Budget Ozone Mapping Profiler Suite

Ka-band TDRSS Antenna, 2-axis gimbal, and boom deployed,

Advanced Technology Microwave Sounder


Cross-track Infrared Sounder

Clouds and Earth's Radiant Energy System


Later the Radiation Budget Instrument Ka-band SMD Antenna, 2-axis gimbal, and boom deployed Visible Infrared Imaging Radiometer Suite

Suomi-NPP/JPSS in Orbit

- With the launch of JPSS-1 in 2017 we will have two very capable polar satellites operating simultaneously
- The combination, with reduced latency, with further enhance forecasts
 - These observations and data will serve the global community of meteorological agencies as well

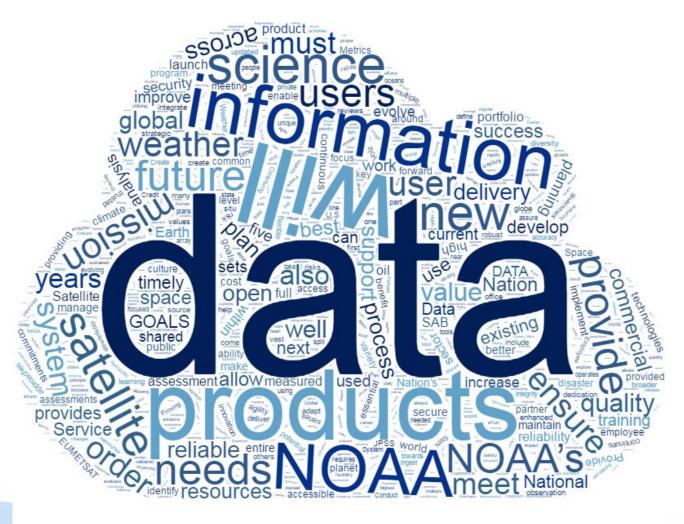
The Near and Not So Near Future for NESDIS

We Are Moving beyond exploitation of a NOAA-centric Observing System ...

...To greater utilization of a growing global constellation of Earth Observation satellites

The NESDIS Strategic Plan

STRATEGIC PLAN


NOAA'S NATIONAL ENVIRONMENTAL SATELLITE, DATA, AND INFORMATION SERVICE

NESDIS Vision: To expand understanding of our dynamic planet as a trusted source of environmental data

IAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Released September 2016

The NESDIS Strategic Plan

The NESDIS Strategic Plan

We have to deliver without interruption the data and observational products our **Users** require.

We must ensure the space and ground assets are current, secure, and delivering the necessary information to meet **User** needs. We must maintain a vibrant and capable workforce within and trusted partnerships globally to meet our **Users**' needs.

Commitments

Continuity

 NESDIS must continue to ensure the continuity of our observations over time and anticipate future risks to mission success with the reliability and robustness that have come to define the organization.

Data & Information

 NESDIS must not only deliver single-source informational products, but also broad-based dataacquisition and distribution products that utilize and integrate multiple sources of data, allowing a broader spectrum of use.

CONTINUITY

NESDIS must continue to ensure the continuity of our observations over time and anticipate future risks to mission success with the reliability and robustness that have come to define the organization.

CONTINUITY

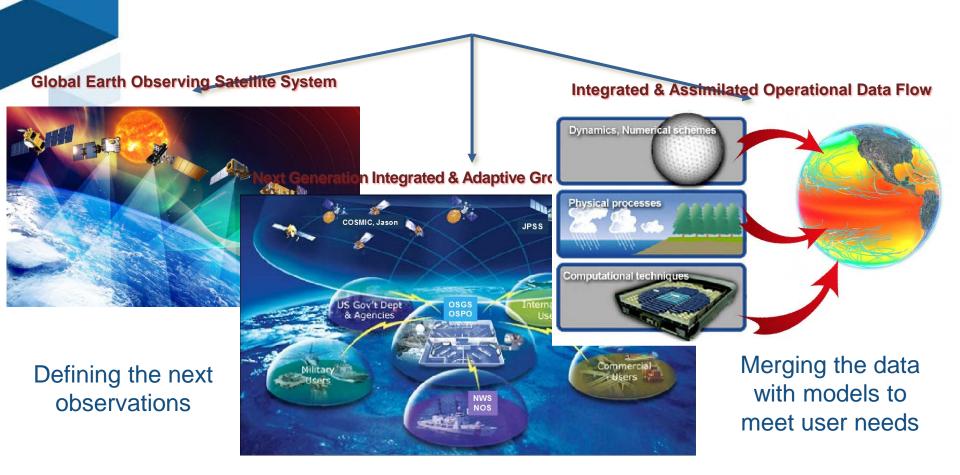
GOES-T 2019

GOES-S 2018

First Focus: Return on National investment!

GOES-U 2024

JPSS-4 2031

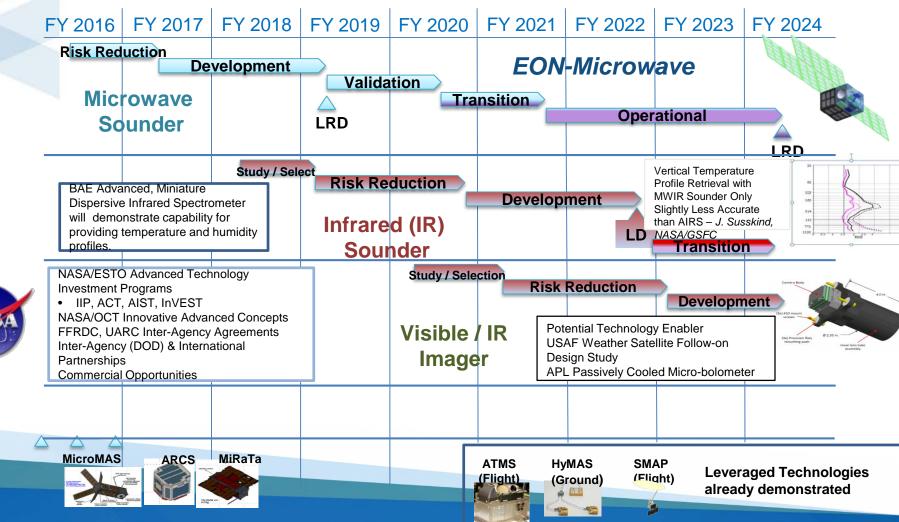

DATA & INFORMATION

NESDIS must not only deliver single-source informational products, but also broad-based data-acquisition and distribution products that utilize and integrate multiple sources of data, to meet NOAA and National objectives.

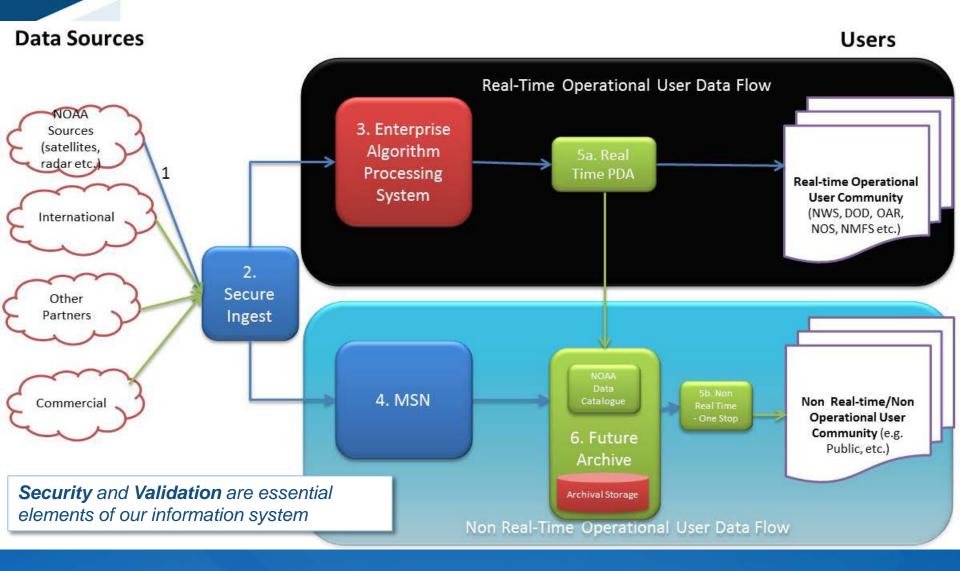
Addressing Needs Across NOAA

WEATHER READY NATION	 Aviation Weather and Volcanic Ash Fire Weather Hydrology and Water Resources Marine Weather and Coastal Events Hurricane/Tropical Storms Routine Weather Severe Weather Space Weather Space Weather Tsunami Winter Weather Environmental Modeling Prediction Science, Services and Stewardship 	НЕАLTHY ОСЕАЛ	 Ecosystem Monitoring, Assessment and Forecast Fisheries Monitoring, Assessment and Forecast Habitat Monitoring and Assessment Protected Species Monitoring Science, Services and Stewardship 	RESILIENT COASTS	 Coastal Water Quality Marine Transportation Planning and Management Resilience to Coastal Hazards and Climate Change Science, Services and Stewardship 	CLIMATE	 Assessments of Climate Changes and Its Impacts Climate Mitigation and Adaptation Strategies Climate Science and Improved Understanding Climate Prediction and Projections
	National Weather Service		National Marine Fisheries Service		National Ocean Service		Office of Oceanic and Atmospheric Research

Architecting the Future

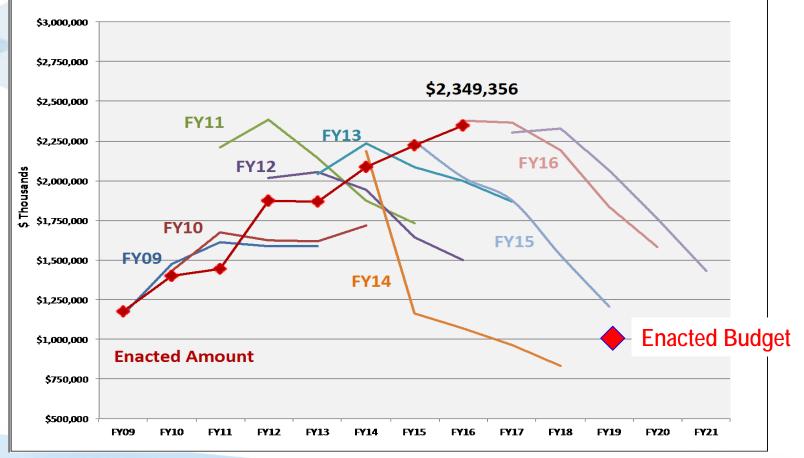


Defining the integrated operations and data management system


Building the Space Architecture Provides USG Senior Identifies Leader & Partner User Priorities: NOAA Observing critique: SMEs from NOAA Lines. NOAA, NASA, DoD, System Council Cooperative Institutes, **Private Sector** Eumetsat Stakeholder Advisory NESDIS/ **Space Platform Requirements** Board Working Group (SPRWG) **OSAAP** Architecture Model based, and **Design Team** iterated with SPRWG Input from Architecture Instrument the **Objectives Value Model** community Catalog Integration Arch Design; CONOPS: Perf. / Cost; Investment Roadmap

We will be doing these studies in an iterative fashion, engaging NOAA and External stakeholders at each cycle, completed over the next 12 months.

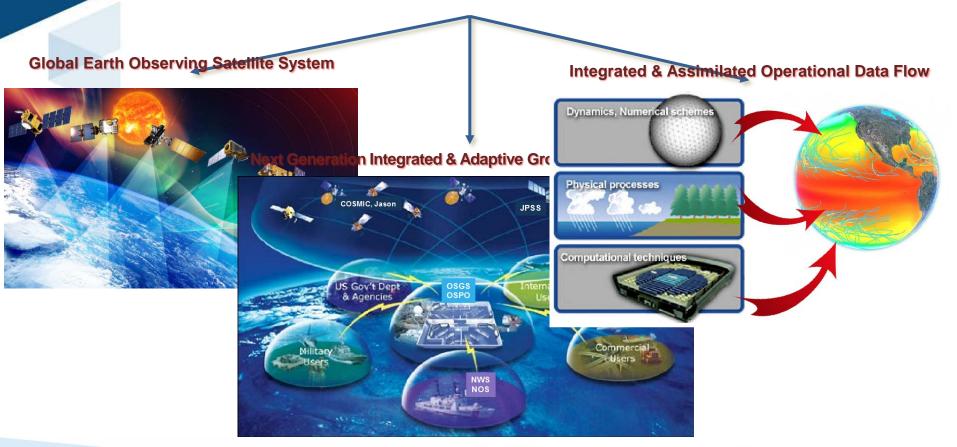
Notional Technology Insertion Plan *May be replicated for high value observation targets*


Building the Ground Architecture Bringing the Data into NESDIS

Opportunities & Challenges

History of NESDIS Requested and Enacted Budgets: 2009 - 2016

Challenge #1: Generating Stakeholder advocacy to sustain the satellite observing system for the long run


NESDIS 5 yr Budget Picture President's FY2017 Budget Proposal

FY 2017 PROPOSED OPERATING PLAN (\$ in Thousands)	FY 2016 President's Budget	FY 2016 Omnibus	FY 2017 PB Submit	FY 2018	FY 2019	FY 2020	FY 2021
Environmental Satellite Observing Systems							
Satellite and Product Operations	93,081	93,000	123,424	123,424	123,424	123,424	123,424
Facility Operations	9,000	9,000	14,250	14,250	14,250	14,250	14,250
Product Development, Readiness & Application	26,316	26,000	34,270	34,270	34,270	34,270	34,270
Commercial Remote Sensing Regulatory Affairs	1,200	1,000	2,065	2,065	2,065	2,065	2,065
Office of Space Commerce	1,000	600	2,000	2,000	2,000	2,000	2,000
Group on Earth Observations (GEO)	500	500	500	500	500	500	500
National Environmental Information Office	59,247	58,986	63,478	63,478	63,478	63,478	63,478
Total, NESDIS - ORF	190,344	189,086	239,987	239,987	239,987	239,987	239,987
Geostationary Systems - R	871,791	871,791	752,784	518,532	335,879	214,674	148,588
Jason-3	7,458	7,458	4,357	7,651	5,338	4,648	4,648
Joint Polar Satellite System (JPSS)	808,966	808,966	787,246	745,777	572,240	445,082	376,061
Polar Follow On	380,000	370,000	393,000	594,000	581,000	579,000	469,000
Cooperative Data and Rescue Services (CDARS)	500	500	500	48,950	32,800	18,550	2,400
DSCOVR	3,200	3,200	3,745	3,622	3,579	3,579	3,579
Space Weather Follow On	2,500	1,200	2,500	53,700	186,100	154,500	81,500
COSMIC 2/GNSS RO	20,000	10,100	16,200	16,200	16,400	8,800	8,800
Satellite Ground Services	58,525	54,000	59,025	57,325	57,325	57,325	57,325
System Architecture and Advanced Planning	4,929	3,929	4,929	4,929	4,929	4,929	4,929
Projects, Planning and Analysis	30,488	25,200	33,488	33,488	33,488	33,488	33,488
Commercial Weather Data Pilot	0	3,000	5,000	tbd	tbd	tbd	tbd
Subtotal, NESDIS Systems Acquisition	2,188,357	2,159,344	2,062,774	2,084,174	1,829,078	1,524,575	1,190,318
Total, NESDIS - PAC	2,189,283	2,160,270	2,063,700	2,085,322	1,827,776	1,523,273	1,189,016
GRAND TOTAL NESDIS	2,379,627	2,349,356	2,303,687	2,325,309	2,067,763	1,763,260	1,429,003

Challenge #2: Managing the Budget to Support and Integrated Observing System

Architecting the Future: Engaging the Community

Challenge #3: Maintaining Active Engagement with US & International Partners, and with the commercial and industrial community

Navigating the Public Private Partnership in Earth Observations

- Commercial Sector is expected to grow significantly in the coming years
 - Likely to be providing a broad spectrum of observational services
- NOAA has a long heritage of providing critical services
 - Long history of operations

- Established and productive data and operations sharing practices with other Met agencies
- Government & Commercial have different cultures with ^{some} different metrics for success
 - Government: low risk tolerance, priority on reliability
 - Commercial: innovative, with focus on earlier ROI

Challenge #4: Establishing a productive, mutually supportive relationship between NOAA and the emerging commercial sector.

Focused on Meeting User Needs NOAA's products and services protect lives and property

Thank you!

Community


Partnerships

 Successful partnerships allow us to meet our mission costeffectively and to be more responsive to the needs of our users and stakeholders. Under this strategic plan, our international and interagency partnerships will remain a priority for NESDIS.

• People

As the scope, breadth and level of expertise of services and information provided by NESDIS expands in the years to come, we will continue to rely on a workforce that is engaged, diverse, dedicated and nationally and internationally recognized as authorities in their fields.

Capabilities

Architecture

 NESDIS will work to evolve its ground and space architecture and move away from stand-alone systems in order to improve observational capabilities, resiliency and efficiency.

• Use-Inspired Science

 NESDIS has an opportunity to help better inform future environmental assessments through innovative science and meaningful engagements with stakeholders and decision makers. These engagements will also help develop the next generation of science-based product and services.